
Getting Started with HTML5,

CSS3, and Responsive

Web Design

Until relatively recently, websites could be built at a ixed width, such as 960 pixels,
with the expectation that all end users would get a fairly consistent experience.
This ixed width wasn't too wide for laptop screens, and users with large resolution
monitors merely had an abundance of margin either side.

But now, there are smart phones. Apple's iPhone ushered in the irst truly usable
phone browsing experience, and many others have now followed that lead. Unlike
the small-screen web browsing implementations of yesterday, that required
the thumb dexterity of a Tiddlywinks world champion to use, people are now
comfortably using their phones to browse the Web. In addition, there is a growing
consumer trend of using small screen devices (tablets and netbooks, for example)
in preference to their full screen brethren for content consumption in the home. The
indisputable fact is that the number of people using these smaller screen devices to
view the Internet is growing at an ever-increasing rate, whilst at the other end of the
scale, 27 and 30 inch displays are now also commonplace. There is now a greater
difference between the smallest screens browsing the Web and the largest than
ever before.

Thankfully, there is a solution to this ever-expanding browser and device landscape.
A responsive web design, built with HTML5 and CSS3, allows a website to 'just
work' across multiple devices and screens. And the best part is that the techniques
are all implemented without the need for server based/backend solutions.

Getting Started with HTML5, CSS3, and Responsive Web Design

[8]

In this chapter we shall:

•	 Learn the importance of supporting small screen devices

•	 Deine "mobile website" design
•	 Deine "responsive website" design
•	 Look at great examples of responsive web design

•	 Learn the difference between viewport and screen sizes
•	 Install and use viewport changing browser extensions

•	 Use HTML5 to create cleaner and leaner markup

•	 Use CSS3 to solve common design challenges

Why smart phones are important (and old
IE isn't)
Whilst statistics should only ever be used as a rough guide, it's interesting to note
that according to gs.statcounter.com, in the 12 months from July 2010 to July 2011,
global mobile browser use had risen from 2.86 to 7.02 percent. The same statistics
show that usage of Internet Explorer 6 fell from 8.79 to 3.42 percent. Even Internet
Explorer 7 had fallen to 5.45 percent by July 2011. If clients often ask you to "make
our site work in Internet Explorer 6 and 7", a fair riposte might be "maybe we should
be concentrating our efforts elsewhere?" Far more people are now browsing websites
on a mobile phone than with a desktop or laptop running Internet Explorer 6 or 7.
That deafening noise you just heard is the collective celebratory whoops of frontend
developers around the globe!

So, there are a growing number of people using small screen devices to browse the
Internet, and the Internet browsers of these devices have typically been designed to
handle existing websites without problems. They do this by shrinking a standard
website to it the viewable area (or viewport to give it the correct technical term)
of the device. The user then zooms in on the area of content they are interested in.
Excellent, so why do we, as frontend designers and developers, need to take any
further action?

Chapter 1

[9]

Well, the more you browse websites, such as the one shown in the preceding
screenshot, on iPhones and Android powered handsets, the more apparent the
reasons become. It's a tedious and frustrating task to constantly zoom in and out
of page areas to see them at a readable size and then move the page left and right
to read sentences that are hanging out of the viewport just enough to be annoying,
whilst not inadvertently tapping a link you don't want to. Surely we can do better!

Getting Started with HTML5, CSS3, and Responsive Web Design

[10]

Are there times when a responsive
design isn't the right choice?
Where budgets allow, and the situation necessitates, a truly "mobile" version of
a website could arguably be the preferred option. This could serve up different
content, design, and interaction based upon the device, location, connection speed,
and host of other variables including the technical capabilities of the device. As a
practical example, imagine a pizza chain. It might have one "standard" website and
a "mobile" version that adds an augmented reality feature based on your current
GPS location to help you ind the store. This kind of solution needs more than a
responsive design alone can offer.

However, while not every project demands that level of sophistication, in almost
all other instances, it would still be preferable to provide users with a tailored view
of our content dependent upon the size of their viewport. For example, on most
sites, although serving the same content, I'd like to vary the way it's displayed. On
small screens, perhaps put elements of less importance beneath the main content,
or as a worst-case scenario, hide them altogether. Maybe alter navigation buttons to
accommodate inger presses, rather than only offering a usable experience to those
able to proffer a precise mouse click! Typography should also be scaled for the sake
of readability, allowing text to be read without necessitating constant swipes from
side to side. By the same token, whilst catering for smaller viewports, we don't want
to compromise the design for those using standard laptop and desktop screens.
While we're being all inclusive, what about a few extra enhancements for those with
large screens such as 1900 pixels wide and more? In short, I, and I suspect you too,
need designs to respond to the entire gamut of viewport sizes that may be used to
view them.

Deining responsive web design
The term responsive web design was coined by Ethan Marcotte. In his seminal List
Apart article (http://www.alistapart.com/articles/responsive-web-design/)
he consolidated three existing techniques (lexible grid layout, lexible images,
and media and media queries) into one uniied approach and named it responsive
web design. The term is often used to infer the same meaning as a number of
other descriptions such as luid design, elastic layout, rubber layout, liquid design,
adaptive layout, cross-device design, and lexible design.

http://www.alistapart.com/articles/responsive-web-design/

Chapter 1

[11]

To name just a few! However, as Mr. Marcotte and others have eloquently argued, a
truly responsive methodology is actually more than merely altering the layout of a
site based upon viewport sizes. Instead, it is to invert our entire current approach to
web design. Instead of beginning with a ixed width desktop site design and scaling
it down and re-lowing the content for smaller viewports, we should design for the
smallest viewport irst and then progressively enhance the design and content for
larger viewports.

Responsive web design in a nutshell

To attempt to put the philosophy of responsive web design in a nutshell,
I would say it's the presentation of content in the most accessible manner
for any viewport that accesses it. Conversely, a truly "mobile website" is
needed when an experience requires speciic content and functionality
based upon the device accessing it. In these cases, a mobile website
presents an entirely different user experience to its desktop equivalent.

Why stop at responsive design?
A responsive web design will handle the low of our page content as viewports
change but let's go further. HTML5 offers us more than HTML 4 ever could and
it's more meaningful semantic elements will form the basis of our markup. CSS3
media queries are an essential ingredient to a responsive design but additional CSS3
modules empower us with previously unseen levels of lexibility. We'll be ditching
swathes of background graphics and complicated JavaScript, replacing them with
lean CSS3 gradients, shadows, typography, animations and transformations.

Before we get on with creating a responsive HTML5 and CSS3 powered web design,
let's irst look at some examples of what we should aspire to. Who is already doing a
good job with all this new fangled responsive HTML5 and CSS3 malarkey and what
can we learn from their pioneering efforts?

Examples of responsive web design
To test your own and others' responsive website designs fully would involve having
separate systems set up for every device and screen size. Although nothing betters
that practice, the majority of testing can be achieved simply by resizing the browser
window. To further aid this method, there are various third-party plugins and
browser extensions that display the current browser window or viewport size in
pixels. Or in some cases, automatically switch the current window or viewport to a
default screen size (1024 x 768 pixels, for example). This allows you to more easily
test what happens as screen viewports change.

Getting Started with HTML5, CSS3, and Responsive Web Design

[12]

Attached to pixels? Get over it!

Don't get very attached to pixels as a measurement unit because we
will be abandoning them in many instances and moving to relative
measurement units (typically, "em" or "ems" and percentages) instead,
once we get into responsive web design proper. For reviewing the work
of other responsive designs and where those designs change however,
they provide a handy reference point.

Get your viewport testing tools here!
Internet Explorer users should make sure that they have the Microsoft Internet
Explorer Developer Toolbar. This can be downloaded from the following URL:

http://www.microsoft.com/download/en/details.aspx?id=18359

If you are using Safari, my personal favorite is Resize (http://resizeSafari.com/),
although ResizeMe (http://web.me.com/aaronholla/Safari_Extensions/
ResizeMe.html) is similar and free.

If you use Firefox, there is Firesizer (https://addons.mozilla.org/en-US/
firefox/addon/firesizer/) and Chrome users should check out the aptly
titled Windows Resizer (https://chrome.google.com/webstore/detail/
kkelicaakdanhinjdeammmilcgefonfh).

Not a fan of extensions? Here's a further alternative: I wrote a simple HTML page to
display the current viewport height and width of a browser window. Using a dab
of the JavaScript library, jQuery (http://jquery.com), this page gets the current
viewport height and width, and displays them. You can keep this page open in
another browser tab, resize your window, and then lick back to the website in
question to see how it fares. You can ind the super simple "What size is my
viewport page?" page at the following URL:

http://benfrain.com/easily-display-the-viewport-size-of-your-page-
for-responsive-designs/

https://addons.mozilla.org/en-US/firefox/addon/firesizer/
https://addons.mozilla.org/en-US/firefox/addon/firesizer/
http://jquery.com

Chapter 1

[13]

Viewport or screen size?

It's important to understand that viewport and screen size are not the
same thing. Viewport relates to the content area within the browser
window, excluding the toolbars, tabs, and so on. More succinctly, it

relates to the area where a website actually displays. Screen size refers
to the physical display area of a device. Beware that some browser resizer
tools display the size, including browser elements such as the URL bar,
tabs, and search boxes, and others don't. In the following screenshot, the
actual viewport size is shown at the top-right position (1156 x 921 px)
whilst the Firesizer plugin shows the window size at the bottom-right
position (1171 x 1023).

Getting Started with HTML5, CSS3, and Responsive Web Design

[14]

Now, we're armed with everything we need to start appreciating the best that the
responsive web has to offer. Fire up your browser of choice, engage your screen size
tool, and take a look at http://thinkvitamin.com/.

If you are viewing the page with a viewport larger than 1060 pixel wide, you will see
a layout similar to the one shown in the following screenshot:

http://thinkvitamin.com/
http://thinkvitamin.com/

Chapter 1

[15]

If however, you're viewing the site with a viewport larger than 930 pixels but lower
than 1060 pixels, you will see a layout, as shown in the following screenshot:

Getting Started with HTML5, CSS3, and Responsive Web Design

[16]

Notice how the main navigation to the side of the logo has changed? The icons to the
right of the main content have been arranged to sit one under another. Everything is
perfectly usable, and most importantly, isn't disappearing off the screen. Now, take a
look with a viewport less than 880 pixels, in the following screenshot:

The header remains similar but notice that the right-hand sidebar is thinner still;
the icons are now 2 by 2 whilst the text blocks have adjusted and the text is lowing
accordingly within the block.

Chapter 1

[17]

However, reduce your viewport to less than 600 pixel in width and you will notice a
major change, as shown in the following screenshot:

How about that? The entire sidebar has responded to our new viewport, letting
the most important part of the site, the content, enjoy the full width of the browser
window. Notice also how the header links are now horizontal, as opposed to being at
the side of the logo, and the logo itself has resized? All these changes help to create a
better experience for the user based upon the viewport dimensions.

Getting Started with HTML5, CSS3, and Responsive Web Design

[18]

Let's look at another example, http://2011.dconstruct.org/. With a wide
viewport (say, more than 1350 pixels) the site looks like the one shown in the
following screenshot:

Notice particularly the grid of nine images. As you decrease the width of the
viewport (to less than around 960 pixels), notice what happens? The grid of three
rows of three images becomes three rows of two images and one row of three at the
bottom, as shown in the following screenshot:

http://2011.dconstruct.org/

Chapter 1

[19]

Getting Started with HTML5, CSS3, and Responsive Web Design

[20]

Decreasing the width of our viewport smaller still, at less than around 720 pixels we
encounter another design "break point"; the header links switch to include images
that provide a better target area for touchscreen navigation:

Smaller still, once we reduce the viewport to less than 480 pixels wide, the image
grid changes again, now showing a row of two images, then three, and then four.
These images continue to resize as the viewport is shrunk to around 300 pixels. To
illustrate, the following screenshot shows how it looks on an iPhone:

Chapter 1

[21]

Online sources of inspiration
One web destination that is useful for inspiration is http://mediaqueri.es.
However, not all websites displayed there necessarily embrace the full responsive
methodology of displaying content around small viewports irst, and progressively
enhancing for larger viewports. Regardless, at this early point, whilst considering
the possibilities of what we can do with responsive web design, there are many great
examples to draw ideas from. Although viewing these websites and resizing the
viewport illustrates what a responsive web design can do, it doesn't demonstrate
what's good about HTML5. The beneits of HTML5 occur "behind the scenes" as it
were, so let's now turn our attention there and ind out what's so great about HTML5.

Getting Started with HTML5, CSS3, and Responsive Web Design

[22]

HTML5—why it's so good
HTML5 places some emphasis on streamlining the actual markup required to create
a page that validates to W3C standards and link all our requisite CSS, JavaScript,
and image iles. For smart phone users, possibly viewing our pages with limited
bandwidth, and a key target for our responsive designs, we want our website to not
just respond to their more limited viewport but also load in the fastest possible time.
Whilst removing superluous markup elements represents only a tiny data saving,
every little helps!

HTML5 offers further beneits and additional features over the previous iteration of
HTML (HTML 4.01). Frontend web developers are likely to be primarily interested in
the new semantic elements of HTML5 that provide more meaningful code to search
engines. HTML5 also enables feedback to the user on basic site interactivity such
as form submissions and so on, often negating the need for more resource heavy
JavaScript form processing. Again, that's good news for our responsive design,
allowing us to create a leaner and faster-loading code base.

Saving time and code with HTML5
The irst line of any HTML document starts with the Doctype (Document Type
Declaration). This is the part that, if we are honest, gets added automatically by our
code editor of choice or we can paste it from an existing boilerplate (nobody really
enters the full HTML 4.01 Doctype out, do they?) Before HTML5, the Doctype for a
standard HTML 4.01 page would have looked as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

Now, with HTML5, it's merely as follows:

<!DOCTYPE html>

Now, as I've already conceded, I don't physically type the Doctype every time I write
a page, and I suspect you don't either. So, what's the big deal I hear you cry? Well,
what about adding links to JavaScript or CSS in your pages? With existing HTML
4.01, the correct way of linking to a script ile would be as follows:

<script src="js/jquery-1.6.2.js" type="text/javascript"></script>

HTML5 makes this easier:

<script src="js/jquery-1.6.2.js"></script>

http://www.w3.org/TR/html4/loose.dtd

Chapter 1

[23]

As you can see, the need to specify the type attribute is no longer considered
necessary. It's a similar case with linking to CSS iles. HTML5 also accepts a far
slacker syntax to be considered "valid". For example, <sCRipt SrC=js/jquery-
1.6.2.js></script> is just as valid as the prior example. We've omitted the
quotation marks around the script source as well as using a combination of upper
and lower case characters in the tag and attribute names. But HTML5 doesn't care—it
will still validate at the W3C HTML5 validator (http://validator.w3.org/). This
is good news if you are sloppy with your code writing but also, more usefully, if you
want to shave every possible surplus character from your markup. There are other
speciics when it comes to the writing of code that make life easier. But I'm guessing
you're not convinced this is all that exciting. So, let's take a quick peek at the new
semantic elements of HTML5.

New, semantically meaningful HTML5 tag
elements
When you're structuring an HTML page, it's standard fare to mark up a header and
navigation section something like this:

<div class="header">

 <div class="navigation">

 <ul class="nav-list">

 Home

 About

 </div> <!—end of navigation -->

</div> <!—end of header -->

However, take a look at how we do it with HTML5:

<header>

 <nav>

 <ul id="nav-list">

 Home

 About

 </nav>

</header>

Getting Started with HTML5, CSS3, and Responsive Web Design

[24]

How about that? Instead of faceless <div> tags for every structural element (albeit with
added class names for styling purposes), HTML5 gives us some far more semantically
meaningful elements to use instead. Common structural sections within pages such as
header and navigation (and many more as we shall soon see) get their own element
tags. Our code just became far more "semantic" with the <nav> tag telling browsers,
"Hey, this section right here is for navigation". Good news for us but perhaps more
importantly, good news for search engines, too. They'll now be able to understand our
pages better than ever before and rank our content accordingly.

When I write HTML pages, I often do so knowing that they will in turn be passed
to the backend crew (you know, those cool kids that deal with PHP, Ruby, .NET,
ColdFusion, and so on) before the pages ultimately make it to the WWW. To stay on
good terms with the backend folks, I often comment the closing </div> tags within
the code to enable others (and often myself too) to easily establish where <div>
elements end. HTML5 negates much of that task. When looking at HTML5 code, a
closing element tag of </header> for example, instantly tells you what element is
closing, without the need to add a comment.

We're just lifting the lid a little here on what semantic goodies HTML5 has for
us in the toy box. Before we get carried away, we have one more friend to get
acquainted with. If there's one thing this whole new era of web design can't
exist without, it's CSS3.

CSS3 enables responsive designs and
more
If you've been in the web design trade from the mid-1990s, you'll remember that
back then, all designs were table-based and the styling was entwined with content.
Cascading Style Sheets (CSS) were introduced as a way of separating design from
the content. It took some time for web designers to step into the bold new world of
CSS-based design but sites such as http://www.csszengarden.com paved the way,
showing just what could be achieved, visually, with a CSS-based design. Since then,
CSS has become the standard way of deining the presentational layer of a web page,
with CSS 2.1 being the current ratiied version of the CSS speciication. CSS3 has yet to
be fully ratiied but that doesn't mean that large portions of it aren't fully usable today.
The W3C working group note at http://www.w3.org/TR/CSS/#css3 is as follows:

CSS Level 3 builds on CSS Level 2 module by module, using the CSS2.1
speciication as its core. Each module adds functionality and/or replaces part of the
CSS2.1 speciication. The CSS Working Group intends that the new CSS modules
will not contradict the CSS2.1 speciication: only that they will add functionality
and reine deinitions.

http://www.csszengarden.com

Chapter 1

[25]

Much of the draft W3C speciication reads (by necessity) like legalese. In simplistic
terms, what matters to us is that CSS3 is built as a set of 'bolt-on' modules rather than
a single consolidated whole. As CSS 2.1 is at the core, none of the techniques you use
with CSS 2.1 today are abandoned. Instead, certain, more mature modules (as not
all modules are at the same state of readiness) of CSS3 can be actively used today,
without waiting for the entire speciication to be ratiied.

The bottom line—CSS3 won't break anything!
Perhaps the most empowering point of note is that there is no penalty in older
browsers for including properties that they do not understand. Older browsers
(including Internet Explorer 6, 7, and 8) will happily skip over CSS3 properties
that they can't process. This gives us the ability to progressively enhance areas of a
design for the better-equipped browsers, whilst ensuring a reasonable fall back for
the older ones.

How can CSS3 solve everyday design
problems?
Let's consider a common design hurdle we all face on most projects—to create a
rounded corner on a screen element, perhaps for a tabbed interface or corner of a
boxed element such as a header for example. Using CSS 2.1 this could be achieved
by using a sliding doors technique (http://www.alistapart.com/articles/
slidingdoors/), whereby one background image sits behind another. The HTML
could look as simple as this:

Box Title

We add a rounded background to the <a> element by creating two images. The irst,
called headerLeft.png, would be 15 pixels wide and 40 pixels high and the second,
called headerRight.png in this example, would be made wider than we would ever
anticipate the header being (280 pixels, here). Each would be one half of the "sliding
door". As one element grows (the text within our tags), the background ills
the space creating a somewhat future proof rounded corner solution. Here is how the
CSS in this example looks:

a {

 display: block;

 height: 40px;

 float: left;

 font-size: 1.2em;

 padding-right: 0.8em;

 background: url(images/headerRight.png) no-repeat scroll top right;

Getting Started with HTML5, CSS3, and Responsive Web Design

[26]

}

a span {

 background: url(images/headerLeft.png) no-repeat;

 display: block;

 line-height: 40px;

 padding-left: 0.8em;

}

The following screenshot shows how it looks in Google's Chrome (v16):

It solves the design problem but requires additional markup (semantically the
 element has no value) and two additional HTTP requests (for the images)
to the server to create the onscreen effect. Now, we could combine the two images
into one to create a sprite and then use the background-position: CSS property
to shift it around but even with the bandwidth economies that provides, it's still an
inlexible solution. What happens if the client decides they want the corners to have a
tighter radius? Or a different color? We'd need to re-make our image(s) again. Sadly,
until CSS3, this has been the reality of the situation we, as frontend designers and
developers have found ourselves in. Ladies and gentleman, I've seen the future, and
it's CSS3 shaped! Let's revise the HTML to be only:

Box Title

And, to begin with, the CSS can become the following:

a {
 float: left;
 height: 40px;
 line-height: 40px;
 padding-left: 0.8em;
 padding-right: 0.8em;
 border-top-left-radius: 8px;
 border-top-right-radius: 8px;
 background-image: url(images/headerTiny.png);
 background-repeat: repeat-x;
}

Chapter 1

[27]

The following screenshot shows how the CSS3 version of the button looks in the
same browser (Chrome v16):

In this example, the two previous images have been substituted for a single 1 pixel-
wide image that is repeated along the x-axis. Although the image is only 1 pixel
wide, it is 40 pixels high, hopefully higher than any contents that will be inserted.
When using an image as a background, it's always necessary to "overshoot" the
height, in anticipation of content overlowing, which sadly makes for bigger images
and greater bandwidth requirements. Here, however, unlike the entirely image-
based solution, CSS3 takes care of the corners for us with the border-radius and
related properties. Client wants the corners to be a little rounder, say 12 pixels? No
problem, just amend the border-radius property to 12px and your work is done.
The CSS3 rounded corners property is fast, lexible, and supported in Safari (v3+),
Firefox (v1+), Opera (v10.5+), Chrome (v3+), and Internet Explorer 9. Microsoft are
so excited about IE 9's support of the feature that (I hope you feel my slight sarcasm
seeping through here) they have even designed an interactive page demonstrating
the various effects that can be achieved with the border-radius property. View this
demonstration at the following URL:

http://ie.microsoft.com/testdrive/html5/borderradius/default.html

CSS3 can take things further by eliminating the need for a gradient background
image by producing the effect in the browser instead. This property isn't as well
supported but with something along the lines of linear-gradient(yellow, blue),
the background of any element can enjoy a CSS3 generated gradient.

Getting Started with HTML5, CSS3, and Responsive Web Design

[28]

The gradient can be speciied in solid colors, traditional HEX values (for example,
#BFBFBF) or using one of the CSS3 color modes (more on these in Chapter 5, CSS3:
Selectors, Typography, and Color Modes). If you're happy for users of older browsers
to see a solid background instead of a gradient (as opposed to nothing), a CSS stack
something like this would provide a solid color in the event of the browser being
unable to handle the gradient:

background-color: #42c264;
background-image: -webkit-linear-gradient(#4fec50, #42c264);
background-image: -moz-linear-gradient(#4fec50, #42c264);
background-image: -o-linear-gradient(#4fec50, #42c264);
background-image: -ms-linear-gradient(#4fec50, #42c264);
background-image: -chrome-linear-gradient(#4fec50, #42c264);
background-image: linear-gradient(#4fec50, #42c264);

The linear-gradient property instructs the browser to start with the irst color
value (#4fec50, in this example) and move to the second color value (#42c264).

You'll notice that in the CSS code, the background-image linear-gradient
property has been repeated with a number of preixes; for example, -webkit-. This
allows different browser vendors (for example, -moz- for Mozilla Firefox, -ms- for
Microsoft Internet Explorer, and so on) to experiment with their own implementation
of the new CSS3 properties before introducing the inished article, at which point
the preixes are unneeded. As stylesheets by their nature cascade, we place the un-
preixed version last, meaning it will supersede the earlier declarations if available.

Look Ma'—no images!
The following screenshot shows how the complete CSS3 button looks in the
same browser:

I think you'll agree—any differences between the image version and the entirely CSS
version are trivial. Building visual elements with CSS3 allows our responsive design
to be far leaner than if we built it with images. Furthermore, image gradients are well
supported in modern mobile browsers, the only trade-off being a lack of gradient
support for browsers such as IE 9 and lower versions.

Chapter 1

[29]

What else has CSS3 got to offer?
So far, we've looked at a very mundane example of where CSS3 can help in everyday
development tasks. However, let's whet our appetite a little and see what real treats
CSS3 allows us. Fire up Safari or Chrome and take a look at http://www.panic.
com/blog/. Whilst sadly this design isn't responsive, the area of interest for us are
the pinned notes at the top. Hover over them and watch as they loat out. Nice, eh?
In the past this kind of enhancement would have been the domain of resource heavy
Flash or JavaScript. Here, it is being achieved entirely through CSS3 transformations.
Using CSS3 rather than JavaScript or Flash makes the animation lightweight,
maintainable, and therefore perfect for a responsive design. The browsers that
support the feature get it, whilst others are none the wiser, merely seeing a static
image in its place.

http://www.panic.com/blog/

Getting Started with HTML5, CSS3, and Responsive Web Design

[30]

Another great example of CSS3 transformations is http://demo.marcofolio.
net/3d_animation_css3/. Again, this isn't a responsive web design, we're just
looking at the CSS tricks being employed. Take a look at this in Internet Explorer
9 or Firefox irst (as of version 9.0, Firefox still didn't support the necessary CSS3
module). Now, take a look in Safari 5+ or Chrome 16+. The following screenshot
doesn't do it much justice so if you're not going to take a look you'll have to take my
word for it—it's good:

But great looking effects aren't solely the domain of the Webkit-based Safari and
Chrome browsers. The following URL works in Firefox too and is another pure
CSS3-based solution:

http://designlovr.com/examples/dynamic_stack_of_index_cards/

http://demo.marcofolio.net/3d_animation_css3/
http://designlovr.com/examples/dynamic_stack_of_index_cards/
http://designlovr.com/examples/dynamic_stack_of_index_cards/
http://designlovr.com/examples/dynamic_stack_of_index_cards/

Chapter 1

[31]

Obviously, these effects are not essential for any website. They are a perfect
illustration of "progressive enhancement". In browsers that do not support the
effects, they merely see the static images. However, users with more modern
browsers can enjoy the visual enhancements. Whilst browser support for CSS3 3D
Transformations is rather limited, support for CSS3 rules such as text-shadows,
gradients, rounded borders, RGBA color, and multiple background images are all
widely supported and provide lexible ways of providing solutions to common
design problems that have had us all cursing and scratching our heads for years.

Can HTML5 and CSS3 work for us today?
Any tool or technique should only be used if the application requires it. As frontend
developer/designers, our projects typically come with a inite amount of time and
resources available to make them inancially viable.

Getting Started with HTML5, CSS3, and Responsive Web Design

[32]

As Internet Explorer 7 and 8 don't support the new semantic HTML5 elements or
CSS3 properties as standard, if the vast majority of visitors to a site use Internet
Explorer 7 or 8, it doesn't make a lot of sense to concentrate your resource on
producing a responsive HTML5 and CSS3 based design for it. That doesn't mean
doing so is an impossible task. As we shall see in Chapter 9, Solving Cross-browser
Responsive Challenges, there are a growing number of tools (referred to as polyills as
they cover the cracks in older browsers) to patch browsers (mainly Old IE) lacking
support for more recent browser features, but adopting a sensible approach to the
implementation of a responsive web design from the outset is always the best policy.

In my own experience I typically ask the following from the outset:

•	 Does the client want to support the largest growing market of Internet users?
If yes, responsive methodology is suitable.

•	 Does the client want the cleanest, fastest, and most maintainable code base?
If yes, responsive methodology is suitable.

•	 Does the client understand that experience can and should be subtly different
across different browsers? If yes, responsive methodology is suitable.

•	 Does the client require the design to look identical across all browsers,
including IE 8 and lower versions? If yes, responsive design is not
best suited.

•	 Are 70 percent or more of the current or expected visitors to the site likely
to use Internet Explorer 8 or lower versions? If yes, responsive design is not
best suited.

It's also important to re-iterate that where the budget allows, there may be times
when a fully bespoke "mobile" version of a website is a more relevant option than
a responsive design. For the sake of clariication, I term entirely mobile focused
solutions that provide different content/experiences to their mobile users as 'mobile
websites'. I don't believe anyone advocating responsive web design techniques
would argue that a responsive web design would be a suitable substitute for a
'mobile website' in every situation.

Chapter 1

[33]

Responsive web designs are not magic
bullets
At the risk of "teaching Grandma to suck eggs", it's worth re-stating that a
responsive HTML5 and CSS3 web design is not a "magic bullet" panacea for all
design and content serving challenges. As ever with web design, the speciics
of a project (namely budget, target demographic, and purpose) should dictate
the implementation. However, in my experience, if the budget is limited and/or
the programming of an entirely bespoke "mobile website" isn't a viable option, a
responsive web design almost always provides a better and more inclusive user
experience than a standard, ixed-width design.

Educating our clients that websites

shouldn't look the same in all browsers
The inal hurdle to clear before embarking on a responsive design is often one
of mindset. And in some ways, this is perhaps the most dificult to overcome.
For example, I'm often asked to convert existing graphic designs into standards
compliant HTML/CSS and jQuery-based web pages. In my own experience, it's
rare (and when I say rare, I mean it's never happened) for graphic designers to
have anything other than a ixed-width "desktop version" of a site in mind when
producing their design composites. My remit is then to create a pixel perfect
rendition of that design in every known browser. Failing or succeeding in this
task deines success in the eyes of my client, the graphic designer. This mindset is
especially entrenched in clients with a background in printed media design. It's easy
to understand their reasoning; a composite of the design can be signed-off by their
own clients, they hand it to the frontend designer/developer (you or I), and we then
spend our time ensuring the inished code looks as close as humanly possible to that
design in all the major browsers. What the client sees is what the client gets.

However, if you've ever tried to get a modern web design looking the same in
Internet Explorer 6 and 7 as it does in a modern standards compliant browser such
as Safari, Firefox, or Chrome, you will understand the inherent dificulties. It's
often taken me as much as 30 percent of a project's allocated time/budget to ix the
inherent laws and failings in these older ailing browsers. That time could have been
spent building on enhancements and economizing code for the growing number
of users viewing sites in modern browsers, rather than patching and hacking the
code base to provide rounded corners, transparent images, correctly aligned form
elements, and so on for a shrinking number of Internet Explorer users.

Getting Started with HTML5, CSS3, and Responsive Web Design

[34]

Unfortunately, the only antidote to this scenario is education. The client needs an
explanation as to why a responsive design would be worthwhile, what it entails, and
why the inished design won't and shouldn't look the same across all viewports and
browsers. Some clients get there, some don't. Unfortunately, some still want all the
rounded corners and drop shadows to look identical in Internet Explorer 6 too!

When I approach a new project, whether a responsive design is applicable or not, I
try and explain the following points to my client:

•	 By allowing older browsers to display the pages slightly differently, it means
that code is more maintainable and cheaper to update in the future.

•	 Making all elements look the same, even on older browsers (for example,
Internet Explorer 8 and lower versions) adds a signiicant amount of images
to a website. This makes it slower, more expensive to produce and more
dificult to maintain.

•	 Leaner code that modern browsers understand equates to a faster website. A
faster website ranks higher in search engines than a slow one.

•	 The number of users with older browsers is shrinking, the number of users
with modern browsers is growing—let's support them!

•	 Most importantly, by supporting modern browsers, you can enjoy a
responsive web design that responds to the differing viewports of browsers
on different devices.

Summary
We've now established what we mean by a "responsive" design and examined great
examples of responsive designs in the wild that make use of the tools and techniques
we are about to cover. We've also acknowledged that we need to make a switch
from a desktop-centric design mindset and move to a more device agnostic stance,
planning our content around the smallest likely viewing area irst and progressively
enhancing the experience from there. Having taken a glimpse at the new HTML5
speciication we've established that there are great portions of it we can use to our
advantage today. Namely, the new semantic markup that will allow us to create
pages with less code and more meaning than would have been possible previously.

The lynch pin in making a fully responsive web design is CSS3. Before we use CSS3
to add visual lair such as the gradients, rounded corners, text shadows, animations
and transforms to our design, we will irst use it to serve a more fundamental role.
By using CSS3 media queries, we will be able to target speciic CSS rules at speciic
viewports. The next chapter is where we will start our "responsive web design" quest
in earnest.

